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SUMMARY

The classical theorles for turbulent shear flow are the momentum
transfer theory of Prandtl, the vorticity transfer theory of Taylor, and
the similarity theory of Von Kérmén. The two transfer theories both
involve a mixture length, which must be given by an additional assumption.
On the other hand, the similarity theory is a more determinate scheme,
becauge it makes a more definite hypothesis about the nature of the turbu-~
lent fluctuations. Goldstein, however, introduced an alternative form
of the similarity theory. A great amount of work has been done to
evaluate the relative merits of these three theories.

Further investigation into the nature of turbulent motion is, however,
done largely in connection with the simpler case of isotropic turbulence.
In this fleld, much recent progress has been mhde, particularly following
the concept of Kolmogoroff. The concept of similarity also plays =
dominant role. Since Kolmogoroff's theory is also applicable to shear
flow, 1t is natural that one should reexamine the similarity theory of
Von Kérmén by using modern concepts. This is the main purpose of the
present investigation. It is fournd that the original form of the theory
1s supported by modern concepts.

INTRODUCTION

The concept of similarity was first introduced by Von Kérmén in 1930
(reference 1). Even at the very beginning, he realized that it was not
possible to have complete similarity, including both the components of
fluctuation essentially free from viscous forces and those largely influ-
enced by viscous forces. It was Taylor (reference 2), however, who
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first made a more penetrating analysis into this question in connection
with isotropic turbulence. He introduced a macroscale of turbulence 1
“and a microscale A. He also fully discussed, both theoretically and
experimentally, how two turbulent fields may be similar in all the large
eddies, which contain practically all the energy, and yet differ com-
pletely in their rates of dissipation, which are governed chiefly by
the small eddies having a negligible contribution to the total energy.
In particular, he gave the relation

c ~ (u')3 N V(u')2 (1)
1 A2

for the energy dissipation € in terms of the scales of turbulence, its
intensity u', and the kinematic-viscosity coefficient v. This rela-
tion shows clearly that full similarity cannot be possible in general.

A further advance in this direction was made by Kolmogoroff (refer-
ence 3). According to his concept, for large Reynolds numbers of turbu-
lence, as defined by R, = u'r/v, the small eddies are independent of

the behavior of the large eddies, except to the extent that they supply
the energy to be dissipated. There are then only the two parameters ¢
and v for the viscous range. From dimensional arguments, Kolmogoroff
introduced the characteristic velocity v and the characteristic scale
1 defined, respectively, by :

v = (st)lﬂ1L

. (v%)l'/ll

In terms of the spectrum of turbulence, the high (spatial) frequency
components are dependent only on v and 1. By assuming that the lower
end of thls range is independent of Vv explicitly, one arrives at the
spectrum

(2)

F o~ 2/3,75/3 (3)

where g 1s the wave number. This relation was first given by Obukhoff
(reference 4) and was found independently later by Onsager (reference 5),
Heisenberg (reference 6), and Von Weizsécker (reference T).
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The idea that the low-frequency range takes care of almost all of
the energy and that the high-frequency range takes care of almost all of
the dissipation has been fully demonstrated by Von K&rm&n and Iin (refer-
ences 8 and 9). ' It is found that, in either case, the unimportant part

to the important part is of the order of R)v-m (vhere m is some posi-

tive number) and is consequently negligible for large Reynolds numbers
of turbulence. The analysis was made by evaluating the integrals

- R
I, =f F(x) dk

0
Iy =f REF(K) dk

0

for energy and dissipation, assuming the characteristic quantities V, 1
for the low-frequency range and the characteristic quantities v,

for the high-frequency range and using Taylor's relation (equation ?l))
end the Qbukoff spectrum formula (equation (3)).

> (%)

J

This kind of analysis is now used to remove a difficulty raised by
Goldstein in his analysis of Von Kirmin's similarity theory (reference 10)
Goldstein showed that there are at least two ways of applying the simi-
larity theory, one analogous to the momentum transfer theory (the
T-theory) as given originally by Von Kéimén, and the other analogous to
the vorticity transfer theory (the M-theory). By an analysis of the
relative importance of the high-frequency and low-frequency components,
it is possible to show that the T-theory is a logical consequence of
Von Kdrmén's similarity concept, while the M-theory does not follow
directly. This kind of investigation also shows that the usual discus-
sion of the similarity theory needs some modification, although the
final conclusions are not altered. '

Tt is the purpose of the present paper to reexamine critically
Von Kérmén's similarity theory for incompressible flows by using modern
concepts in order to provide a basis for extension and application of the
theory to compressible flows. In references 11 and 12 turbulent boundary
layer over a flat plate In compressible flow is treated in the same spirit.
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THE CLASSICAL SIMITARITY THEORY OF VON KﬁRMﬁN

It seems convenient to begin with a brief sketch of the original
similarity theory of Von Kédrmén, together with Goldstein's discussion
of its difficulties and his alternative suggestion (the M-theory).
Remarks will then be made from the present point of view, leading to
the fuller discussions of the next gection.

Von Kdrmfn considered a steady two-dimensional mean flow and made
the following hypotheses (see reference 10): (1) The turbulence mech-
anism is essentially independent of the viscosity of the fluld (except
in the viscous layer near the walls); (2) In comparing the turbulence
mechanisms at two different points, consideration of the fields of
turbulent flow may be restricted to the immediate neighborhoods of these
points; (3) The turbulence flow patterns at different points are gimilar
(relative to frames of reference moving with the mean velocities at the
points) and differ only in scales of length and time (or velocity). On
the basis of these hypotheses (the validity of which will be examined
later), the following development of the theory may be made. (See
appendix A for definitions of important symbols.)

Consider a two-dimensional perallel mean motion with velocity U(y)
in the direction of the x-axis. If (u,v,w) are the turbulent velocity
components and p is the pressure, the Navier-Stokes equations are

-

Ou 4y U 4 O (yu) + O (uv) + O(uw) = -192 4 y An

ot dx Ox oy dz P Ox

vV gy, S O(g) =120 > (5)
5 * U 5t ax(vu) + ay(vv) + az(vw) ="t 3 + VvV Av

ow ow . o d K3 _ 19p
§+U-&+$(W) +ay(W) + aZ(W) = - 63, + VYV Aw
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and the equation of continuity is

Bu,dv, .o
ox ¥ oy ¥ dz (6

According to the first assumption the term in v may be neglected. One
may now differentiate the set of equations (5) and combine the resultant
equations to yield the equations for the turbulence vorticity components
(g,n,g). The usual derivation is based on these vorticity equations.

From the present point of view, the neglect of viscosity means that
the "low-frequency" components of the turbulent fluctuations are being
considered. It 1s known, however, that the "high-frequency" components
of the vorticity fluctuatlons are more important. It is consequently
difficult to justify the neglect of viscosity from the vorticity equation,
ag it is usually done. Even the neglect of viscosity from the original
Navier-Stokes equations (5) requires a careful exemination. These points
wlll be discussged more fully in the next section.

To proceed with the derivation, take the origin at the point P
under consideration and axes moving with the mean velocity at P, so
that U =0 at the origin. The assumption is Introduced that only the
immediate neighborhood of P may be comsidered: For dU/dy, d2U/dy=,
their values are taken at P, while for U +the first term only of the
Taylor expansion is taken, namely, y(dU/dy)P. The scales of length and

velocity are introduced by writing

x = 1% t = 1%/8
y = 1% u = AU
z =12 v = AV
| W= 1%
so that
£ = AE/1
n = &R/

¢ = A?’/'L

where E = %% - %%, and so forth. Substituting these into the equations
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for vorticity and requiring them to be independent of the position of
the origin and of the values of dU/dy, d2U/dy2 there, one obtains

U

Constant 1 —
dy

=
I

o~
1]

dyf .. 2

2
Constant 4au [d7u
dy

The Reynolds shearing stress at different points of the fluid is

T = -puv = -pA°Ov and is therefore proportional to p12(dU/dy)2; and,
if 1 is multiplied by a suitable constant, there may, when signs are
regarded, be written

T = p7,2 @g'_q
dyjdy

1 = Kk, |40/d5U
ldyd‘yz

The average state of affairs under consideration is essentially indepen-
dent of x and 2z, and the rate M at which x-momentum is communicated
to unit volume is

M = d(-puv) /dy
= -(pA2/1) d(??x“z)ds‘f

and is therefore proportional to pl(dU/dy’)2 or to ple(dU/dy)(deU/dyz).
If 1 1is multiplied by a suitable constant, there may therefore be written

M= ple-ﬂ __dzU

K, | /d2U
dy, dy2

o~
]
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Notice also that M = p¥{, .if the average state of affairs is indepen-
dent of x. Thus, the first alternative, the T-theory given by Von Kdrmin,
is formally related to the momentum transfer theory, while the second
alternative, the M-theory given by Goldstein, is formally related to the
vorticity transfer theory, although the basic concept of the similarity
theory is essentially different from a transfer theory.

The above derivation is essentially the one used by Goldstein, the
only difference being that he started with the vorticlty equations
directly. The original derivation of Von Kdrmfn is made by a considera-
tion of two~-dimensional fluctuations, which is sufficient to provide the
essential steps. In Goldstein's paper, there are also an extension of
the theory to the flow through a pipe and a critical discussion of the
validity of the theory. Hils investigations show that in the axially
gymmetrical case, it 1s impossible to have a simple similarity as that
in the two-dimensional case 1f terms of the same order of magnitude are
all kept. This becomes obvious when the radius of curvature of the )
surface of constant velocity is recognized as an additional parameter
affecting the length scale for a local similarity. He also found that
the veloclity distribution from the 7-theory agrees better with the
experiments for flow between parallel planes, while the M-theory appears
to be more satisfactory for pipe flow.

Another generally recognized difficulty with the similarity theory is
the following. As a consequence of the theory, the ratios

u2: v2: w2: Uv: uw: vw should remain comstants. In a channel, this is
found to be a good approximetion only for points not too close to either
the wall or the center line.

To gummarize, the followlng unsatisfactory points in the similarity
theory have been discussed:

(a) There is nothing in the original theory to decide between the
T-theory and the M-theory and any other alternative obtained, say, by
an application of the theory to the calculation of 327/dy2.

(b) Tt cannot be extended to cases other than the original case of
two-dimensional parallel flows.
(c) The ratios w2 ve and so forth are not constants near the center
of the channel or near the boundary.
1

(d) In addition, there is the difficulty in epplying the theory to
flows with a point of inflection in the velocity profile.

(e) Again, the scale 1 +turns out to be only moderately small in
most cases.
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It must be noted that most of the difficulties are limitations which
do not bear on the basic concept of the theory. The final form of the
theory is applicable only when the scale may be expected to be determined

by dU/dy and d?U/dya. This 1s obviously not the case 1n wakes or in
the central part of the channel. This is also the reason why the axlally
symmetrical case cannot be treated. The presence of another length scale
mekes similarity unlikely. Near the boundery, similarity might also break
down as soon as the scale is comparable with the distance from the

boundary. -

Thus, the essential difficulties are (a) and (e) discussed above if
one limits oneself to flows through channels and in the boundary layer.

It is to be recognized that the whole boundary layer or the channel
ghould be regarded as an "organic" field of motion. One might even
describe the turbulent motion as a nonlinear oscillation superposed over
a field of flow. Thus, any attempt to "localize" the theory, such as is
done in the similarity theory and to a certain extent in the transfer
theories, is at best a rough approximation. One is faced with the dilemmsa
of either treating each individual case separately with proper emphasis
on the influence of the boundary conditions or being satisfled with an
aporoximate theory having a fairly general applicability. The latter
course has often been taken. '

The only remaining difficulty (a) is to be settled by a critical
examination of the concept of similarity from the standpoint of recent
developments of the statistical theory of turbulence. It wlill be seen
that the basic concept of Von Kdrmén's similarity prefers the original
form of the theory (T-theory) to any theory based on higher-order deriva-
tives (M-theory, etc.).

CRITICAL DISCUSSION OF SIMILARITY CONCEPT FROM STANDPOINT

OF MODERN STATISTICAI. THEORIES

The concept of the similarity theory in shear flow will now be
formulated and it will be shown how it is related to the concept of
similarity developed- in the statistical theory of isotroplc turbulence.
The concepts developed from the statistical theory will then be applied
to the present problem to show that the M-theory does not follow from
Von KérmAn's concept of nonviscous similarity in shear flow.

General concept of slmilarity.- As discussed above, the similarity
of the large-scale eddies (which are responsible for transfer) is at
best a rough approximation. The similarity of the small eddies (which
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are responsible for the energy dissipation) 1s however a much closer
epproximation at very large Reynolds numbers of turbulence. According.
to the concept of Kolmogoroff, this part of the turbulent fluctuation
will depend only on the kinematic viscosity coefficlent v and the rate
of energy transferred to these scales from larger scales. Furthermore,
this part of turbulent motion is isotroplc and has & universal character
independent, say, of the amount of shear in the main flow. The rate of
energy transfer is approximately the same as the total rate of dissipe-
tion 6. The order of atcuracy of such approximations has been estimated
by Von KérmAn and Lin (references 8 and 9). In other words, in the case
of shear flow, there is a production of turbulent energy from main motion
by the usual transfer mechanism (at a scale of 1 = KU'/U", say). This
large-scale turbulence breaks down Into motions at smaller scales and
eventually passes into the viscous range to be dissipated into heat. The
rate of transfer may be estimated, say, by Taylor's formula. These large-
scale motions, being produced directly from the mean motion, must depend
on their characteristics. According to the concept of Von Kérmén, the
turbulent fluctuations in this range have a universal structure, with a
length scale 1 = KU'/U" and a velocity scale 1U'. Thus, two regimes
of similarity are visualized: (a) The large-scale similarity of

Von Kérmén and (b) the small-scale similarity of Kolmogoroff. The first
range 1s anlsotropic and contributes to the shear; the second range is
isotropic and contributes only to the disgsipation. The transition range

probebly hes an energy spectrum ¢2/3g-5/3 with decreasing amount of
shear.

This picture of similarity is analogous to the one visualized by
Von KérmAn and Lin (references 8 and 9) for the intermediate stage of decay
of isotropic turbulence. There, the large-scale eddies are also igotropic,
having a scale determined by the Loitsiansky invariant. It must be
remarked that the establishment of an equilibrium or quasi-equilibrium
state for large-scale motions takes a long time. Thus, it may be sub-
Jected to doubt whether the idealized picture thus visualized can actually
occur for decaying turbulence. On the other hand, in the case of shear
flow, a statlionary system being considered, the condition iz more conducive
to the establishment of Von Kérmin's similarity.

With this general concept of similarity in mind, the classical theory
of similarity for shear flow may now be examined with the help of results
developed for isotropic turbulence. In the first place, one may examine

the orders of magnitude of length, velocity, and vorticity for the eddies
of large scales and small scales.
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For large-scale motions,

Length scale 1~ U'/U"
Velocity scale v ~ 1’ >~ ()

Vorticity scele V/1 ~ U'

For small-scale motions,

ﬂ
1 -3/2
Length scale n = (v3/e) /h = Number X IRX /
Velocity scale v = (ve)l/h = Number X V'R).-l/2 > (8)
¥ 1/2 '
Vorticity scale ;= (v/e) = Number X (V/'L)Rx
v

where R, 1is the Reynolds number of turbulence and is usually very

large.

These order-of-magnitude relations will now be applied to the
development of the similarity theory. In particular, the following
two points will be considered:

(a) The neglect of the viscous components from the equations for
turbulent fluctuations

(b) The relative plausibility of the T-theory and the M-theory

In meking these considerations, the low-frequency and the high-frequency
components willl be considered as behaving independently in a linear
equation. For nonlinear terms, low-frequency components can be obtained
by the product of two terms both of the high frequency or both of the
low frequency, while high-frequency components can be obtained by the
product of one term of the high frequency and one term of the low fre-
quency. Thus, 1f one rites

u=u +u (9)
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where u; denotes the low-frequency components, and uy, the high-
frequency components, then in

2

uc = ule + 2u-Luh + uh2 (10)

the low-frequency components come from ulz and uh2, while the high-
frequency components come from W, and uh?.

Since u, < 4, it is. seen that u° may be approximated by uzz.

Thus, in the left-hand side of any one of equations (5), one ig Justified
in putting a subscript 1 +to every fluctuating quantity, if the low-
frequency components of the whole left side are desired. The right-hand
gide is linear, and hence one can again consider the low-frequency com-
ponents separately. For these, the viscous dissipation is known to be

negligible (as may be verified by noting that Vv Au = VV/I2 is small

compared with g%(uu) when Vi/v 1is 1arge). Consequently, Von Kérmdn's
original assumption of neglecting v is Justified.

The equation of continuity (6) is linear and can therefore be
considered separately for components of low and high frequencies.

Tt is remarked that the above discussion can be carried through
only when equations (5) are put into the form given. If the left
sldes of equations (5) were written in the form

Du _du, 3, du, du,. 2
oF 3t + U = + 1 Sx + v S; + W‘S; (11)

the neglect of the influence of the high-frequency components on the low-

frequency components would have been dubious. Consider, for example, the
term

Bu Buz Bu-L Buh - Buh
THTE tTely TTiyy My (12)
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Bul Buh
The low-frequency components are given by v; S__ as well as by i S__.
y Y
Now, by equations (7) and (8),
v 2 ¥ |
1 3y 1
Jou
h
oy 0
LYo 1/
1A

and it would not be legitimate to replace v %% by vz(auz/ay). The

mathematical argument can be carried through only when Du/Dt, and so
forth are put into the form given in equations (5), with the help of the
equation of continuity.

T-theory and M-theory.~ The gbove arguments also suggest that in the
evalvation of T = -puv, +the contribution of the low-frequency components
predominates, while that of the high-frequency components is negligible.
This would Justify the application of the similarity concept to the cal-
culation of 7. On the other hand, in the product v{, the high-
frequency components predominate. This suggests that TE would be
dependent more on the high-frequency components than on the low-frequency
components. Thus, the similarity concept at low frequencies, as developed
above, cannot be used for obtaining a formula for vE. The M-theory is
therefore not a direct consequence of Von Kdrmén's concept of similarity.

These arguments should be somewhat modified by the fact that turbu-
lence tends to be 1sgotropic at high frequencies. This fact strengthens
the argument for T but weakens the argument against '?E. It is pos-
gible that the contribution to Vf is equally important from high-
frequency and low-frequency components. But there is no convincing
argument to show that the high-frequency components can be entirely
neglected. To make the ideas more precise, use will now be made of the
correlation tensor and the spectral tensor in the discussion.
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For convenience, first consider homogeneous anisotropic turbulence.

Then, the correlation tensor Ryy = ui(P)uk(P') is a function of the

relative positional vector ¢;. The spectral tensor Fik(ﬁz) stands
in Fourier transform relation to Ryy:

b1

~1(xt) ar (k)

Fi(K) =

. (1k)

Ry, () = Fi(r)e

From these, it is seen that

du
ui(P)E‘E(P') - f/] r, (K, e 8% ar(x) (15)

If one lets ¢—>0 1in the formula for Rik’ it 1s seen that

w e = fffFik( k) dr(k) (16)

If a spherical coordinate system is considered in the k-space, integration
with respect to the angular variables leads to

where @i 1is a "correlation coefficien ," being equal to unity when
i = k. Isotropy at high frequencies requires that, for 1 # k, Py (x)

approach zero rapidly with Kk—sww, being substantially zero in the
viscous range.
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Thus, the contribution of the low-frequency components to ujuy

dominates that of the hlgh-frequency components even to a greater extent
when 1 # k +than when i = k. In the latter case, it is well-known

that the high-frequency components are negligible (cf. appendix B), and
this is therefore still more so in the case i # k where the factor Py
reduces the influence of the high-frequency components still further.

It is not possible to make a similar discussion for vVt by using
homogeneous and anigotropic turbulence, because this term is zero. How-
ever, one may write a formula analogous to equation (17) in the form

Buk _

ui&i‘ A F(r)y,.  (K)k dx (18)

ikl

vwhere Vyy; 1s a dimensionless "correlation coefficient,” approaching

zero rapidly as rk—>w, and the factor k 1is suggested by formula (15).
It w111 be shown in appendix B that, without the factor Vjy;, the

contribution to the above integral would practically all come from the
high-frequency components. However, since V4y; must approach zero
rapidly as k—>»w, this argument is not certain. But, at any rate,
equation (18) does not show that ;E will be essentially determined by
the low-frequency components. One may also argue as follows. The fac-

tor Wikl probably begins to become insignificant only in the n_5/3 range.
For various Reynolds numbers of turbulence, corresponding to identical

low-frequency components, the extent of the n-5 3 range differs. Since
this range is now obviously important for the determination of inte-

gral (18), the amount of vorticity transfer would depend on the local
Reynolds number of turbulence. This 1s another way of stating that there
is no similarity in this sense between the various points of the flow
field.

The above discussion shows that the T-theory should be used in
connection with Von Kérmén's similarity concept.

DISCUSSION

It is perhaps in order now to make a general survey of the present
theories of shear flow. In contrast with the similarity theory, there
are the theories of transfer of momentum and vorticity. In comparing the
similarity theory with transfer theories, it should be noted that, although
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there is formal similarity in the final formulas, there is a definite
difference in basic concept. The similarity theory does not directly

use the physical picture of the mechanism of transfer. It, however,
agserts more definitely on the nature of the turbulent fluctuations.

On the one hand, this has the advantage of leading to a formula for the
gcale. On the other hand, one can apply the concepts evolved from modern
gtatistical theories to the theory of shear flow by following the concept
of similarity. The present work seems to be one of the few attempts in
this direction, and it tends to bear out the classical form of the theory
of Von Kdrmn (T-theory). The use of Von Kdrmén's concept to calculate
average quantities involving velocity derivatives (such as in the
M-theory) cannot be justified by current concepts of the statistical
theory of turbulence.

The conclusion that the T-theory (analogous to the momentum transfer
theory) 1s preferable to the M-theory (analogous to the vorticity transfer
theory) perheps requires further clarification. A great deal of work
has been done, following Taylor, which shows that the vorticlity transfer
theory is better than the momentum transfer theory. The strongest case
is perhaps the one involving joint veloclty and temperature distributions
in a wake and in a Jet. Whereas the momentum transfer theory predicts
the same distribution for velocity and temperature, the vorticity transfer
theory can account for the difference in distribution which is actually
observed experimentally. In fact, if 6 1s the fluctuation of tempera-~
ture, the transfer of heat is

— 2lqu|ag
-0y = 1°|=|== 1
ldy 0 (19)

in either theory. The momentum transfer theory gives further

= 21dU|du
= -uv = 1 ‘-d?rd—y (20)

while the vorticity transfer theory gives

ol

_ 2
LY 2 A (21)
P Oy dy dy2
If 1 1is assumed constant, this leads to
T . 1,2id0jdu
5= 3 1 ay| 3y (22)
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The difference in the numerical factor 1/2 is the essemtial point in
question.

In gpplying this kind of argument to the similarity theory, one
must recognize, as mentioned above, that the mechanism of transfer is
not directly used in the similarity theory. In the transfer theories,
it is natural to use the same transfer coefficient 12l&U/dyi in all
the formulas, such as equations (20) to (22). On the basis of the
similarity concept,

According to the 7-theory, then

but nothing can be said of the constants of proportionality. Thus, the

above method of testing cannot distinguish between the T~theory and the
M-theory.

It must be added that the gimilarity theory with the for-

mila 1 ~ U'/U" does not apply to the case of wakes and jets, because
the velocity-distribution curve has a point of inflection. The general
concept of similarity of low-frequency components, however, might still
apply even though the scale of similarity in such cases is probably not
determined by the local velocity distribution. In fact, even in other.
cases of shear flow, the validity of the general considerations of
gimilarity does not depend on the correctness of Von Kermgn's formula.

Massachusetﬁs Institute of Technology
Cambridge, Mass., December 27, 1950
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APPENDIX A
SYMBOLS
1 similarity scale of length
D presgsure |
t time
u,V,w fluctuating velocity components in x~, y-, and z-direction,
respectively
Xy,¥s2 Cartesian coordinates; x-axis in direction of mean flow
L macroscale of turbulence
Rx Reynolds number of turbulence
U velocity in x—direcfion
v velocity scale
€ rate of dissipation
0 fluctuation of temperature
K wave number
A Taylor's microscale of turbulence
v coefficient of kinematic viscosity
EsNs turbulence vérticity components
P density of fluid
T shearing stress
Subscripts:
1 low-frequency part of fluctuations
h high-frequency part of fluctuations

Barred quantities always represent mean values; primed quantities
represent fluctuations.
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APPENDIX B
MOMENTS OF THE SPECTRUM OF TURBULENCE

As indicated in the section "Critical Dissussion of Similarity
Concept from Standpoint of Modern Statistical Theories,” the relative
contribution of the low-frequency and high-frequency components to the
moments of the spectral function plays an important role in deciding
the physical concept of the mechanism of turbulence. In this section,
it will be shown that in the case of large Reynolds numbers, the low-
frequency contribution to the integral

I, = [F(n)nn dk (A1)

is much more important than the high-frequency contribution if n < 2/3,
while the reverse is true if n > 2/3 (equation (A15)). The low fre-
quencies and the high frequencies are separated at a fairly arbitrary

point in the k/3 range. In the borderline case of n = 2/3, the
relative contribution depends on where the separation of the two ranges
is made (equation (A16)).

The gpecial cases of n = O (giving the energy) and n =2 (giving
the dissipation) are well-known (cf. "Introduction"). The case n =1 has
been used in the section "Critical Discussion of Similarity Concept from
Standpoint of Modern Statistical Theories” to bring out the difficulties
agsociated with the M-theory. The case n = -1 would be of importance
in determining the macroscale. It is clear that the macroscale would be

proportional to
> 1
L=f F(k)k ~ dax fF(R) dk (A2)
0 0

and is consequently a low-frequency property. This is in contrast with
the microscale A of Taylor. Since A 1s proportional to I /I,, it
depends on the low-frequency components as well as on the high-frequency
components.

The method of investigation is the one used by Von K{rmén and Lin
(references 8 and 9). ILet k* be some frequency (as yet unspecified) in



NACA TN 2541 19

the range where F ~ 5'5/3. The spectrum below this frequency k¥ 1s
asgumed similar with a length scale L and a velocity scale V. Above
it, the characteristic quantities are v and 1. Thus, the spectrum
may be described as follows. For low frequencies,

F(k) = V2LP(kL) (A3)

where the function f(X) has the behavior

2(X) =~ cx's/ 3 (ak)

.

for large values of X, for example, of the order of X¥* = k¥L.
For high frequencies,

F(x) = veng(sn) ' (a5)

-~

where the function g(x) has the behavior

g(x) ~cx/3 (6)

for small values of x, for example, of the order of x¥ = K¥y.

In evaluating the integral (A1), split it up into two parts:

R [oe]
n
In = JW F(e)e ae + | Fle)r” a (A7)
0 Kk*
The low-frequency part is
* )
n
Tn,1 =f F(r)e™ dk

0 .
2] *
= Xﬁfx X2 (X) ax (48)
L™ do
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where X¥* is large. The high-frequency part is

I = F(e )™ ax
*

K
-X E <g(x) ax (9)
T‘

where x*¥ 1s small. To get the order of magnitude of the integrals,
use is made of equations (Al) and (A6). Thus, for n >2/3,

¥
Jp.q = X £(X) &
0

¥ n-2
=fx 2 2(x) -cx“5ﬁ dX + CX* 3( -%) (A10)
0

The first integral may be approximated by letting the upper limit go to
infinity, and then
¥*
’ X9e(X) ax
0

2
¢ 2(X*)n"a'+ 0(1) (A11)
.2

3

e
o~
Il

n,

In the case n < 2/3, integral (A10) is convergent as X¥—»w. Thus,
write o

‘ _ - .
F XPP(X) &X = fxnf(x) ax - fm XDE(X) - CX 5/5’ & + —C 2(}(*)n'3r
0 0 x* n-=

3




.
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which leads to the same answer (All). Similarly,

dJ.

x¥ n-g

© ' 2
Ne=rr
=f (%) dx = ——(x*) 3. o(1) for n 22/3
3 :

The ratio of the two integrals Jn

B o A
=3 2
To1 /J'n’h = n >

Jn,Z/Jn,h

,1 and Jn,h is therefore

I
e}
5

w

n

(@]
—~
B
S

n<

win

On the other hand, from equations (A3) to (46),

V2L C(KL)-s/3

Pnolun) 23

- go that
1/3

)
)1/3.
-

2
In,l/In:h =0 _(x* gﬂ o>

In’l/ln’h =0 5x*)~(n-%ﬂ n <-§-

Thege are the statements made at the beginning of this section.

<1<
1]
=

n

B

i

win

Y

(a12)

(A13)

(A1k)

(a15)
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In the case n = 2/3 , the above type of arguments give

and the ratio is

To,1/Ta,n = 0@%—@ (126)

which depends on the choice of the frequency xk¥*.
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